Левитирующий поезд маглев. Шанхайский Маглев – самый быстрый и самый дорогой поезд в мире. Все с нуля

Поезда на магнитной подушке – транспорт, способный изменить мир

Левитирующий поезд маглев. Шанхайский Маглев – самый быстрый и самый дорогой поезд в мире. Все с нуля

Поезда на магнитной подушке, маглевы – самый быстрый вид наземного общественного транспорта. И хотя в эксплуатацию пока введено всего три небольших трека, исследования и испытания прототипов магнитных поездов проходят в разных странах. Как развивалась технология магнитной левитации и что ждет ее в ближайшем будущем вы узнаете из этой статьи.

История становления

Первые страницы истории маглев были заполнены рядами патентов, полученных в начале XX века в разных странах. Еще в 1902 году патентом на конструкцию поезда, оснащенного линейным двигателем, отметился немецкий изобретатель Альфреда Зейден. А уже спустя четыре года Франклин Скотт Смит разработал еще один ранний прототип поезда на электромагнитном подвесе.

Немного позже, в период с 1937 года по 1941 год, еще нескольких патентов относящихся к поездам, оснащенным линейными электродвигателями, получил немецкий инженер Герман Кемпер. К слову, подвижные составы Московской монорельсовой транспортной системы, построенной в 2004 г.

, используют для движения асинхронные линейные двигатели – это первый в мире монорельс с линейным двигателем.

Поезд Московской монорельсовой системы возле станции Телецентр

В конце 1940-х годов исследователи перешли от слова к делу.

Британскому инженеру Эрику Лэйзвейту, которого многие называют «отцом маглевов», удалось разработать первый рабочий полноразмерный прототип линейного асинхронного двигателя.

Позже, в 1960-х годах, он присоединился к разработке скоростного поезда Tracked Hovercraft. К сожалению, в 1973 году проект закрыли из-за нехватки средств.

Прототип поезда с линейным двигателем RTV 31 (проект Tracked Hovercraft)

В 1979 году появился первый в мире прототип поезда на магнитной подушке, лицензированный для предоставления услуг по перевозке пассажиров – Transrapid 05.

Испытательный трек длиной 908 м был построен в Гамбурге и представлен в ходе выставки IVA 79. Интерес к проекту оказался настолько велик, что Transrapid 05 удалось успешно проработать еще три месяца после окончания выставки и перевезти в общей сложности около 50 тыс. пассажиров.

Максимальная скорость этого поезда составляла 75 км/ч.

Система Transrapid 05 на выставке IVA 79

А первый коммерческий магнитоплан появился в 1984 году в Бирмингеме, Англия. Железнодорожная линия на магнитном подвесе соединяла терминал международного аэропорта Бирмингема и расположенную рядом железнодорожную станцию.

Она успешно проработала с 1984 по 1995 год. Протяженность линии составляла всего 600 м, а высота, на которую состав с линейным асинхронным двигателем поднимался над полотном дороги – 15 миллиметров.

В 2003 году на ее месте была построена система пассажирских перевозок AirRail Link на базе технологии Cable Liner.

В 1980-х годах к разработке и реализации проектов по созданию высокоскоростных поездов на магнитной подушке приступили не только в Англии и Германии, но и в Японии, Корее, Китае и США.

Как это работает

О базовых свойствах магнитов мы знаем еще с уроков физики за 6 класс. Если поднести северный полюс постоянного магнита к северному полюсу другого магнита они будут отталкиваться. Если один из магнитов перевернуть, соединив разные полюса – притягиваться. Это простой принцип заложен в поездах-маглевах, которые скользят по воздуху над рельсом на незначительном расстоянии.

В основе технологии магнитного подвеса лежат три основных подсистемы: левитации, стабилизации и ускорения. В то же время на данный момент существует две основных технологии магнитного подвеса и одна экспериментальная, доказанная лишь на бумаге.

Поезда, построенные на базе технологии электромагнитного подвеса (EMS) для левитации используют электромагнитное поле, сила которого изменяется по времени. При этом практическая реализация данной системы очень похожа на работу обычного железнодорожного транспорта.

Здесь применяется Т-образное рельсовое полотно, выполненное из проводника (в основном металла), но поезд вместо колесных пар использует систему электромагнитов – опорных и направляющих.

Опорные и направляющие магниты при этом расположены параллельно к ферромагнитным статорам, размещенным на краях Т-образного пути.

Главный недостаток технологии EMS – расстояние между опорным магнитом и статором, которое составляет 15 миллиметров и должно контролироваться и корректироваться специальными автоматизированными системами в зависимости от множества факторов, включая непостоянную природу электромагнитного взаимодействия.

К слову, работает система левитации благодаря батареям, установленным на борту поезда, которые подзаряжаются линейными генераторами, встроенными в опорные магниты. Таким образом, в случае остановки поезд сможет достаточно долго левитировать на батареях. На базе технологии EMS построены поезда Transrapid и, в частности, шанхайский маглев.

Поезда на базе технологии EMS приводятся в движение и осуществляют торможение с помощью синхронного линейного двигателя низкого ускорения, представленного опорными магнитами и полотном, над которым парит магнитоплан.

По большому счету, двигательная система, встроенная в полотно, представляет собой обычный статор (неподвижная часть линейного электродвигателя), развернутый вдоль нижней части полотна, а опорные электромагниты, в свою очередь, работают в качестве якоря электродвигателя.

Таким образом, вместо получения крутящего момента, переменный ток в катушках генерирует магнитное поле возбуждающихся волн, которое перемещает состав бесконтактно. Изменение силы и частоты переменного тока позволяет регулировать тягу и скорость состава.

При этом чтобы замедлить ход, нужно всего лишь изменить направление магнитного поля.

В случае применения технологии электродинамического подвеса (EDS) левитация осуществляется при взаимодействии магнитного поля в полотне и поля, создаваемого сверхпроводящими магнитами на борту состава. На базе технологии EDS построены японские поезда JR–Maglev.

В отличие от технологии EMS, в которой применены обычные электромагниты и катушки проводят электричество только в тот момент, когда подается питание, сверхпроводящие электромагниты могут проводить электричество даже после того, как источник питания был отключен, например, в случае отключения электроэнергии. Охлаждая катушки в системе EDS можно сэкономить достаточно много энергии.

Тем не менее, криогенная система охлаждения, используемая для поддержания более низких температур в катушках, может оказаться достаточно дорогой.

Главным преимуществом системы EDS является высокая стабильность – при незначительном сокращении расстоянии между полотном и магнитами возникает сила отталкивания, которая возвращает магниты в первоначальное положение, в то же время увеличение расстояния снижает силу отталкивания и повышает силу притяжения, что опять же ведет к стабилизации системы. В этом случае никакой электроники для контроля и корректировки расстояния между поездом и полотном не требуется.

Правда, без недостатков здесь также не обошлось – достаточная для левитации состава сила возникает только на больших скоростях.

По этой причине поезд на системе EDS должен быть оснащен колесами, которые смогут обеспечивать движение при низких скоростях (до 100 км/ч).

Соответственные изменения также должны быть внесены по всей длине полотна, так как поезд может остановиться в любом месте в связи с техническими неисправностями.

Еще одним недостатком EDS является то, что при низких скоростях в передней и задней частях отталкивающих магнитов в полотне возникает сила трения, которая действует против них. Это одна из причин, по которой в JR–Maglev отказались от полностью отталкивающей системы и посмотрели в сторону системы боковой левитации.

Стоит также отметить, что сильные магнитные поля в секции для пассажиров порождают необходимость установки магнитной защиты. Без экранирования путешествие в таком вагоне для пассажиров с электронным стимулятором сердца или магнитными носителями информации (HDD и кредитные карточки), противопоказано.

Подсистема ускорения в поездах на базе технологии EDS работает точно также, как и в составах на базе технологии EMS за исключением того, что после изменения полярности статоры здесь на мгновение останавливаются.

Третьей, наиболее близкой к реализации технологией, существующей пока только на бумаге, является вариант EDS с постоянными магнитами Inductrack, для активации которых не требуется энергия. До недавнего времени исследователи считали, что постоянные магниты не обладают достаточной для левитации поезда силой.

Однако эту проблему удалось решить путем размещения магнитов в так называемый «массив Хальбаха». Магниты при этом расположены таким образом, что магнитное поле возникает над массивом, а не под ним, и способны поддерживать левитацию поезда на очень низких скоростях – около 5 км/ч.

Правда, стоимость таких массивов из постоянных магнитов очень высока, поэтому пока и не существует ни одного коммерческого проекта данного рода.

Книга рекордов Гиннесса

На данный момент первою строчку в списке самых быстрых поездов на магнитной подушке занимает японское решение JR-Maglev MLX01, которому 2 декабря 2003 года на испытательной трассе в Яманаси удалось развить рекордную скорость – 581 км/ч. Стоит отметить, что JR-Maglev MLX01 принадлежит еще несколько рекордов, установленных в период с 1997 по 1999 год – 531, 550, 552 км/ч.

Если взглянуть на ближайших конкурентов, то среди них стоит отметить шанхайский маглев Transrapid SMT, построенный в Германии, которому удалось в ходе испытаний в 2003 году развить скорость 501 км/ч и его прародителя – Transrapid 07, преодолевшего рубеж в 436 км/ч еще в 1988 году.

Практическая реализация

Поезд на магнитной подушке Linimo, эксплуатация которого началась в марте 2005 года, был разработан компанией Chubu HSST и до сих пор используется в Японии. Он курсирует между двумя городами префектуры Айти.

Протяженность полотна, над которым парит маглев составляет около 9 км (9 станций). При этом максимальная скорость Linimo равна 100 км/ч.

Это не помешало ему только в течение первых трех месяцев с момента запуска перевезти более 10 млн пассажиров.

Более известным является шанхайский маглев, созданый немецкой компанией Transrapid и введенный в эксплуатацию 1 января 2004 года. Эта железнодорожная линия на магнитном подвесе соединяет станцию шанхайского метро Лунъян Лу с международным аэропортом Пудун. Общее расстояние составляет 30 км, поезд преодолевает его приблизительно за 7,5 мин, разгоняясь до скорости 431 км/ч.

Еще одна железнодорожная линия на магнитном подвесе успешно эксплуатируется в городе Тэджон, Южная Корея. UTM-02 стал доступен пассажирам 21 апреля 2008 года, а на его разработку и создание ушло 14 лет. Железнодорожная линия на магнитном подвесе соединяет Национальный музей науки и выставочный парк, расстояние между которыми всего лишь 1 км.

Среди поездов на магнитной подушке, эксплуатация которых начнется в ближайшем будущем, стоит отметить Maglev L0 в Японии, его испытания были возобновлены совсем недавно. Ожидается, что к 2027 году он будет курсировать по маршруту Токио – Нагоя.

Очень дорогая игрушка

Не так давно популярные журналы называли поезда на магнитной подушке революционным транспортом, а о запуске новых проектов подобных систем с завидной регулярностью сообщали как частные компании, так и органы власти из разных стран мира. Однако большинство из этих грандиозных проектов были закрыты еще на начальных стадиях, а некоторые железнодорожные линии на магнитном подвесе хоть и сумели недолго послужить на благо населения, позже были демонтированы.

причина неудач в том, что поезда на магнитной подвеске чрезвычайно дороги. Они требуют специально построенной под них с нуля инфраструктуры, которая, как правило, и является самой расходной статьей в бюджете проекта.

К примеру, шанхайский маглев обошелся Китаю в $1,3 млрд или $43,6 млн за 1 км двустороннего полотна (включая затраты на создание поездов и постройку станций). Конкурировать с авиакомпаниями поезда на магнитной подушке могут лишь на более длинных маршрутах.

Но опять же, в мире достаточно мало мест с большим пассажиропотоком, необходимым для того чтобы железнодорожная линия на магнитном подвесе окупилась.

Что дальше?

На данный момент будущее поездов на магнитной подвеске выглядит туманно в большей степени из-за запредельной дороговизны подобных проектов и длительного периода окупаемости.

В то же время множество стран продолжают инвестировать огромные средства в проекты по созданию высокоскоростных железнодорожных магистралей (ВСМ).

Не так давно в Японии были возобновлены скоростные испытания поезда на магнитной подушке Maglev L0, который войдет в эксплуатацию к 2027 году.

Японское правительство также надеется заинтересовать собственными поездами на магнитной подушке США.

Недавно представители компании The Northeast Maglev, которые планируют соединить с помощью железнодорожной линии на магнитном подвесе Вашингтон и Нью-Йорк, совершили официальный визит в Японию.

Возможно поезда на магнитной подвеске получат большее распространение в странах с менее эффективной сетью ВСМ. К примеру, в США и Великобритании, но их стоимость по-прежнему останется высока.

Есть еще один сценарий развития событий.

Как известно, одним из путей к увеличению эффективности поездов на магнитной подушке является применение сверхпроводников, которые при охлаждении до близких к абсолютному нулю температур полностью теряют электрическое сопротивление.

Однако держать огромные магниты в баках с чрезвычайно холодными жидкостями очень дорого, так как чтобы удерживать нужную температуру, нужны громадные «холодильники», что еще больше повышает стоимость.

Но никто не исключает вероятности, что в ближайшем будущем светилам физики удастся создать недорогое вещество, сохраняющие сверхпроводящие свойства даже при комнатной температуре.

При достижении сверхпроводимости при высоких температурах мощные магнитные поля, способные удерживать на весу машины и поезда, станут настолько доступными, что даже «летающие автомобили» окажутся экономически выгодными.

Так что ждем новостей из лабораторий.

Источник: https://itc.ua/articles/poezda-na-magnitnoy-podushke-transport-sposobnyiy-izmenit-mir/

Поезда на магнитной подушке: почему «транспорт будущего» не прижился | Rusbase

Левитирующий поезд маглев. Шанхайский Маглев – самый быстрый и самый дорогой поезд в мире. Все с нуля

Поезда на магнитной подушке — это экологический чистый, бесшумный и быстрый транспорт. Они не могут слететь с рельсов и в случае неполадки способны безопасно остановиться. Но почему же такой транспорт не получил широкого распространения, и люди по-прежнему пользуется обычными электричками и поездами?

Поезда на магнитной подушке: почему «транспорт будущего» не прижился Вероника Елкина

В 1980-е годы считалось, что поезда с магнитной левитацией (маглевы) это транспорт будущего, который уничтожит внутренние авиарейсы. Эти поезда могут перевозить пассажиров со скоростью 800 км/ч и не наносят практически никакого вреда окружающей среде.

Маглевы способны ездить в любую погоду и не могут сойти со своего единственного рельса — чем дальше поезд отклоняется от путей, тем сильнее его толкает обратно магнитная левитация.

Все маглевы двигаются с одинаковой частотой, поэтому не будет никаких неполадок с сигналами.

Представьте себе, какой эффект оказали бы такие поезда на экономику и транспорт, если бы расстояние между отдаленными крупными городами преодолевалось за полчаса.

Но почему вы до сих пор не можете ездить по утрам на работу со сверхзвуковой скоростью? Концепт маглевов существует уже более века, еще с начала 1900-х было оформлено множество патентов, использующих эту технологию. Однако до наших дней дожило лишь три рабочие системы поездов на магнитной подушке, причем все они есть только в Азии.

Японский маглев. Yuriko Nakao/Reuters

До этого первый рабочий маглев появился в Великобритании: в период с 1984 по 1995 из аэропорта Бирмингема ходил шаттл AirLink. Маглев был популярным и дешевым транспортом, но его обслуживание обходилось очень дорого, поскольку некоторые запчасти были единичного производства и их было тяжело найти.

В конце 1980-х Германия тоже обратилась к этой идее: ее беспилотный поезд M-Bahn ездил между тремя станциями западного Берлина. Однако технологию левитирующих поездов решили отложить на потом, и линию закрыли. Ее производитель TransRapid проводил испытания маглевов до тех пор, пока в 2006 году на тренировочном полигоне в Латене не произошел несчастный случай, в котором погибло 23 человека.

Это происшествие могло поставить крест на немецких маглевах, если бы компания TransRapid не подписала до этого договор на строительство в 2001 году маглева для Шанхайского аэропорта. Сейчас этот маглев является самым быстрым электропоездом в мире, который ездит со скоростью 431 км/ч.

С его помощью расстояние от аэропорта до бизнес-квартала Шанхая можно преодолеть всего за восемь минут. На обычном транспорте для этого понадобился бы целый час. В Китае есть еще один среднескоростной маглев (его скорость составляет около 159 км/ч), который работает в столице провинции Хунань, Чанша.

Китайцы настолько полюбили эту технологию, что к 2020 году планируют запустить еще несколько маглевов в 12 городах.

Канцлер Германии Ангела Меркель первой проехала на маглеве TransRapid до Шанхайского аэропорта. Rolf Vennenbernd/EPA

В Азии сейчас ведется работа и над другими проектами поездов на магнитной подушке. Один из самых известных — это беспилотный шаттл EcoBee, который ездит от южнокорейского аэропорта Инчхон с 2012 года. На его самой короткой линии расположено семь станций, между которыми маглев проносится со скоростью 109 км/ч. А еще поездки на нем абсолютно бесплатны.

Система Linimo рядом с Нагоей представляет собой городской маглев, который движется с относительно медленной скоростью. Японцы используют технологию магнитной левитации с 1969 года. Сейчас их самый амбициозный проект — это линия маглевов Chuo Shinkanse, по которой можно будет ездить из Токио до Нагойи со скоростью в 498 км/ч (в основном путь будет проходить под землей).

Почему такая технология не прижилась в других странах?

Все упирается в деньги. Строительство маглевов нужно начинать с нуля. Правительства большинства стран просто не готовы к таким затратам, особенно если у них уже развита традиционная железнодорожная инфраструктура. На постройку небольшого маглева в Шанхае потребовалось более $1 миллиарда, а на строительство японского еще больше.

Японский маглев. Kyodo/Reuters

Кроме того, маглевы не гарантируют какую-либо прибыль. Даже самые успешные азиатские проекты принесли плоды лишь через несколько десятков лет и ценой огромных усилий. Например, шанхайский маглев приносит ежегодные убытки в размере $93 миллионов.

Если китайское правительство способно смириться с такими расходами, то власти большинства стран считают, что будет дешевле обновить существующие железные дороги. Повлиять на ситуацию могут только частные инвестиции, однако даже группа частных сообществ «Японские железные дороги» во многом контролируется государством и до сих пор получает от него значительные субсидии.

Есть ли преимущества у такой инфраструктуры будущего?

Несмотря на огромную стоимость линии маглевов от аэропорта Инчхон, его создатели утверждают, что она на две трети ниже цены обычной железной дороги. По их словам, «хоть расходы на электричество для работы маглева на 30% выше, чем у стандартного поезда, эксплуатация поезда обходится на 60-70% дешевле».

Аналогично для строительства одного километра японского маглева потребовалось $93 миллиона, однако расходы на техобслуживание довольно небольшие, а сам маглев гораздо надежнее и тише, чем традиционные транспортные системы. Кроме того, эти поезда идеальны для городов, поскольку не вредят атмосфере.

Поэтому другим странам все же стоит следить за тем, что происходит в азиатском регионе. Потому что воплотить идею маглевов вполне реально.

Источник.

Материалы по теме:

Идея вакуумных поездов Hyperloop зародилась еще задолго до Илона Маска

Сингапур отказался от беспилотных поездов в метро из-за постоянных перебоев

Каким будет скоростной поезд Hyperloop в Саудовской Аравии

Власти Дубая анонсировали запуск летающего такси без водителя

Источник: https://rb.ru/story/maglevs-now/

Shanghai Maglev (Шанхай Маглев) – самый быстрый поезд в мире

Левитирующий поезд маглев. Шанхайский Маглев – самый быстрый и самый дорогой поезд в мире. Все с нуля

Поезд Shanghai Maglev («Маглев Шанхай» или «Шанхайский Маглев») — самый быстрый и , в то же время, самый дорогой поезд в мире. Название «Маглев» происходит от сокращения двух слов: магнитная левитация (англ. magnetic levitation) — под действием мощного электромагнитного поля поезд левитирует (парит) над полотном дороги.

Shanghai Maglev — эта первая в мире коммерческая железнодорожная линия на магнитном подушке. Линия этой железной дороги проходит из центра города в аэропорт и является одной из достопримечательностей как Шанхая, так и всего Китая в целом.

История поезда Шанхайский Маглев

Строительство линии «Маглев» в Шанхае велось в 2001-2003 годах немецкой компанией Transrapid, и 30 километров дороги обошлись в 10 млрд. юаней (1.6 млрд. долларов США).

Такие высокие расходы связаны с тем, что значительная часть трассы проходит над заболоченной местностью, и строителям пришлось устанавливать опоры эстакады на специальные бетонные подушки, упирающиеся в скальное  основание.

Таких опор, к слову сказать, получилось немало, а толщина некоторых бетонных подушек достигает 85 метров.  Ввод железнодорожной линии «Маглев» в эксплуатацию состоялся 1 января 2004 года.

Маршрут и скорость поезда Маглев

Поезд на магнитной подушке «Маглев» курсирует между международным аэропортом Пудун и станцией метро Лунъян в Шанхае.

Как уже было сказано выше, протяжённость Шанхайской скоростной магистрали на магнитной подушке составляет 30 километров.

Это расстояние поезд преодолевает всего за 8 минут (от 7 минут 20 секунд до 8 минут 10 секунд в зависимости от времени дня).  Чтобы преодолеть это же расстояние на метро, понадобится 40 минут.

Максимальная скорость поезда «Маглев» — 431 км/ч. Разогнавшись до такой скорости в середине маршрута, поезд удерживает её 1,5-2 минуты.

Средняя скорость движения поезда «Маглев» на всем маршруте составляет 250 км/ч.

Cтанция Лунъян в Шанхае Поезд «Маглев» на станции Лунъян в Шанхае Поезда «Маглев» на маршруте между Шанхаем и аэропортом Поезд «Маглев» у шанхайского аэропорта Пудун

Внутри поезда Маглев

Шанхайский поезд «Маглев» укомплектован современными, просторными и удобными вагонами. В каждом есть кондиционер, и пассажиры имеют возможность сами регулировать температуру.

Кресла скомплектованы два в ряд (VIP-класс) или по три в ряд (стандартные места). Для пассажиров в вагонах установлены ЖК-экраны, на которых отображается текущая скорость поезда и время.

И когда на экране появляется  максимальная скорость (431км/ч), некоторые пассажиры фотографируют экран.

Стандартный вагон поезда «Маглев» VIP-класс в поезде «Маглев» Места пассажиров VIP-класс в поезде «Маглев» Табло текущей скорости в поезде «Шанхайский Маглев»

Расписание и билеты на поезд Маглев Шанхай-Аэропорт

Железнодорожная линия «Маглев» Шанхай — Аэропорт Пудун работает с 6:45 утра и до 9: 40 вечера. Интервалы движения составляют 15-20 минут. Актуальное расписание Шанхайского Маглева можно посмотреть на официальном сайте поезда. Там же можно получить информацию о действующих тарифах и ценах.

Цена билета зависит от выбранного класса путешествия и от того, путешествуете ли вы в один конец или туда — обратно. Билет туда – обратно действует в течение семи дней.

Авиапассажирам, пользующимся услугами в день прилёта/ вылета, предоставляется скидка при предъявлении билета на самолёт или посадочного талона.

Билеты можно свободно приобрести в любое время в одном из центров по их продаже:  на станции Longyang Rd, либо в аэропорту. Примечательно, что дети ростом до 120 см могут путешествовать бесплатно, но обязательно в сопровождении взрослых. Для детей выше 120 см нужно купить билет за полную стоимость.

Расписание поезда Шанхайский МаглевЦены на билеты на поезд Маглев

Поезд на магнитной подушке Маглев — интересные факты

  • Поезд обходится без машиниста. Управление осуществляется с помощью компьютеров из центра управления.
  • В случае потери электропитания срабатывают специальные тормоза, которые создают магнитное поле с обратным вектором.

    За счёт этого скорость поезда снижается сначала до 10 км в час, затем поезд останавливается и опускается на рельсы.

  • Изначально существовал план по продлению магнитной линии до другого аэропорта Шанхая — до Хунцяо, и далее на юго-запад до Ханчжоу. В итоге длина пути составила бы 175 км.

    Но проект был заморожен, и вместо этого с 2010 года Шанхай и Ханчжоу соединила высокоскоростная железная дорога.

Фото поезда Шанхайский Маглев

Поезд «Шанхайский Маглев» в ожидании пассажиров Поезд «Шанхайский Маглев» прибывает на станцию Лунъян Поезд «Шанхайский Маглев» на станции Лунъян Вагон поезда «Шанхайский Маглев» Вход в поезд «Шанхайский Маглев»

поезда Маглев

всей поездки поезда «Маглев» из центра Шанхая до аэропорта Пудун:

Контакты железнодорожной линии Маглев

Почтовый адрес:2100 Long Yang RoadPudong Shanghai,

China

Источник: https://vagon-vokzal.ru/world-railways/high-speed-trains/shanghai-maglev.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.